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Abstract
Correctly matching feature points in a pair of images is an important preprocessing step for many computer

vision applications. In this paper we propose an efficient method for estimating the number of correct matches
without explicitly computing them. To this end, we propose to analyze the set of matches using the spatial
order of the features, as projected to the x-axis of the image. The set of features in each image is thus
represented by a sequence, and analyzed using the Kendall and Spearman Footrule distance metrics between
permutations. This result is interesting in its own right. Moreover, we demonstrate three useful applications
of our method: (i) a new halting condition for RANSAC based epipolar geometry estimation methods,
(ii) discarding spatially unrelated image pairs in the Structure-from-Motion pipeline, and (iii) computing
the probability that a given match is correct based on the rank of the features within the sequences. Our
experiments on a large number of synthetic and real data demonstrate the effectiveness of our method. For
example, the running time of the image matching stage in the Structure-from-Motion pipeline may be reduced
by about 90% while preserving about 85% of the image pairs with spatial overlap.

Index Terms—Feature Matching, RANSAC, Spatial Order, Correct Matches.
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1 INTRODUCTION

MATCHING feature points between a pair of images
is a fundamental problem in computer vision. The

estimation of epipolar geometry between images [1], [2], 3D
structure reconstruction (SfM) [3], [4], and scene recognition
[5] are typical examples of useful tasks that are based on fea-
ture matching. While many methods for feature matching
exist, the critical stage of filtering incorrect matches is costly
when using algorithms such as Random Sample Consensus
(RANSAC) [1], [2], [6].

We propose a method1 for analyzing the set of correct
matches, without explicitly computing it, using the spatial
order of the features in each image. Our method estimates
the number of correct matches, the overlap region of the
pair of images and whether they overlap at all, and the
probability that a given match is correct. Our estimations
can be used as a preprocessing step to improve the efficiency
of existing methods such as RANSAC and SfM, as described
below. The method can be applied to sets of matching
features irrespective of their descriptors (e.g., [7], [8], [9])
or the matching method used to compute them.

The basic idea is as follows. We represent the image
features as sequences defined by their spatial order along
the x-axis (or the y-axis) of the image. The matching be-
tween features in a pair of images induces a permutation
that relates the spatial order in one image to that in the
other image (see Figure 1). The matching is analyzed using
measures of correlation between permutations, the Kendall
and Spearman Footrule distance metrics [10], [11]. We use
statistical assumptions on the distribution of correctly and
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1. A MATLAB code for our method is publicly available at http://

liortalker.wixsite.com/liortalker/code.

incorrectly matched features; the spatial order of correctly
matched features is usually preserved, whereas incorrectly
matched features are expected to have random order. These
assumptions are justified empirically in Section 6.3.1. Note
that the problem is not trivialized by these assumptions;
simply computing the largest set of features that preserve
their spatial order does not provide the correct set of
matches since some incorrect matches also preserve order
(see discussion in Section 3). To obtain our estimations, it
is therefore necessary to consider these two assumptions in
addition to analyzing the interaction between correct and
incorrect matches.

We next describe three applications of the estimated
number of inliers computed by our method.

Halting condition for RANSAC:
In adaptive RANSAC [1], [2], [6], a subset of matches in a
pair of images is randomly sampled and used to compute
the expected geometric transformation between the features
(e.g., homography or epipolar geometry), which is then
verified against all matches. The transformation with the
largest set of inliers, features consistent with the computed
geometric transformation, is chosen. Since the number of in-
liers is usually unknown, the number of required iterations
is high. This increases the running time of RANSAC, which
is its major drawback. Our estimate of the number of correct
matches can be used to improve the running time by halting
when a consensus set of this size is obtained (see Section 6).

Improving the efficiency of the SfM pipeline:
Computing the structure of the scene and the cameras’
parameters from a set of images using SfM methods (e.g.,
[3], [4], [12], [13]) is a fundamental problem in computer
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vision, with many applications. Such methods, which typ-
ically require tens or hundreds of images, strongly rely
on correct matches. A major time-consuming step in SfM
methods is the robust matching of features between im-
age pairs, which is typically obtained by pairwise image
matching and RANSAC. Hence, to improve SfM efficiency,
methods for detecting candidate pairs on which to apply
a robust matching method were proposed (e.g., [13], [14],
[15], [16], [17]). The number of correct matches computed
by our method can be used to significantly shorten the SfM
pipeline by running RANSAC only on image pairs with a
sufficiently large number of correct matches. In Section 6 we
show that in this task our method outperforms the Bag of
Visual Words (BoW) method [14] and the Hough Pyramid
Matching (HPM) [18].

Guided RANSAC:
The probability that a given match is correct can be used
as a sampling prior in guided RANSAC methods, where
matches that are more likely to be correct are sampled more
often (e.g., [1], [2], [6], [19], [20], [21]). In existing methods
the probability that a given match is correct is based only
on feature descriptors. We show that the number of correct
matches can be used to compute the probability that a given
match is correct based only on the features’ rank in the
set of ordered features in each of the images. Thus, our
method is an alternative to appearance based methods for
estimating the probability for match correctness (see details
in Section 5).

The rest of the paper is organized as follows. In the next
section we review related work. In Section 3, we formalize
the problem of estimating the number of correct matches. In
Section 4, we analyze the problem and present a method for
estimating the number of correct matches. In Section 5, we
present a method for computing the probability that a match
is correct. In Section 6 we present quantitative results for
our method, compare it to other methods, and demonstrate
its usefulness in three applications. Finally, in Section 7, we
conclude the paper and propose future research directions.

2 RELATED WORK

Feature point matching between a pair of images has been
studied extensively in computer vision. Improving the ac-
curacy of feature matching is still a widely studied research
area. Many interest point detectors and patch descriptors
were proposed to detect and match the images of the same
3D points in the scene (e.g., [7], [8], [9]). Recently, fully
learned feature detectors and descriptors have been pro-
posed using Convolutional Neural Networks (CNNs) [22],
[23], [24]. However, their improved accuracy mostly comes
with a significant increase in descriptor size and hence with
increasing matching runtime. Appearance based methods,
such as [25], discard features by learning the success rate in
matching their descriptors, in order to increase the propor-
tion of correct to incorrect matches. Other methods use local
geometric structures between a number of matches in order
to decrease the probability of mismatching, e.g., [26], [27]. In
[28] a coarse 3D reconstruction is used to filter out incorrect
matches.

A major drawback of the RANSAC method for filtering
incorrect matches is its running time; for example, running

RANSAC on a pair of images with 1000 matches may take
a few seconds, in particular when there are only incorrect
matches. This can be a major bottleneck in online applica-
tions involving large sets of images. To improve RANSAC’s
runtime (and accuracy), methods for guiding the sampling
of matches according to their probability to be correct (in-
stead of a uniform sampling) were proposed [1], [2], [6], [19],
[20], [21], [29], [30]. In [29], a spatial coherency measure for
the matches is considered as a likelihood. In [30], Extreme
Value Theory is leveraged to estimate a confidence measure
for each match to be correct. In [1], [2], the similarity of
feature appearance defined by Lowe’s ratio test between the
closest and the second closest matches [7] is used as a match
correctness likelihood. This method ignores important geo-
metric information. In our method, we use the spatial order
of the matched features, which carries geometric informa-
tion. A comparison between probabilities computed by our
method and Lowe’s distance ratio is provided in Section 6.

The largest portion of the runtime in a SfM pipeline
is spent on image pair matching; thus, filtering spatially
unrelated image pairs is essential. The goal is often to obtain
a Scene Graph (SG), where the nodes correspond to images,
and an edge, (i, j), exists if images i and j have a spatial
overlap (i.e., their fundamental matrix can be computed).
This is usually done by assigning similarity measures be-
tween pairs of images and using this measure to filter out
spatially unrelated images, either by a simple threshold or
by more complex methods that consider the structure of the
graph, e.g., [13], [15], [16], [17]. One of the most widely
used methods for computing similarity between pairs of
images is the BoW method [14]. The keypoints from all
images are first indexed in a visual vocabulary. Each image
is then represented as a (sparse) histogram of vocabulary
word occurrences. The similarity between a pair of images
is given by a weighted `2 distance between the histograms
of the image pair, where the weights reflect the frequency of
word occurrences. One major drawback of BoW is the lack
of spatial information.

Another popular approach for filtering spatially unre-
lated image pairs in a SfM pipeline is using techniques
inspired by image retrieval [18], [31], [32], [33], [34], [35],
[36], which ranks images from a dataset based on their
similarity to a query image. In [18] a spatially aware voting
method inspired by Hough transform is applied to effi-
ciently determine which sets of feature matches are related
by a geometric transformation with high probability. In [33],
[34], a compact descriptor of fixed length called VLAD,
which encodes the image descriptors and is directly used
for image pair matching, is introduced. In [32] a new match-
ing score between images is defined from a combination
of the matching score from the VLAD approach and the
Hamming embedding approach, which binarizes the visual
words in the BoW approach. In [35], [36], the local shape
(i.e., orientation and scale) of feature descriptors is used
to approximately determine which image pairs have scene
overlap. In addition, these methods are able to obtain an
approximate geometric transformation for the image pair.
A comprehensive survey on image retrieval techniques is
given in [31]. Our method is complementary to these ap-
proaches and may also be used as a similarity measure
in order to filter out spatially unrelated image pairs, as
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Figure 1: Correctly/incorrectly matched features are marked
as green/yellow circles, respectively. The feature sequences
are given by [N ] = 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10〉 and σ =
〈9, 5, 1, 3, 4, 2, 6, 7, 8〉. For example, σ(1) = 9 and σ(5) = 4.
Note that the green lines (correct matches) do not intersect,
while most of the yellow lines (incorrect matches) do.

demonstrated in Section 6.2.2.
A method for estimating the inlier rate was used in

[37] to compute a homography transformation between two
images, which is guaranteed to find an approximation of
the global optimum. The rate is estimated by counting the
number of homographies that agree with each inlier rate.
The drawback of the method is the search process, which
is time consuming and applicable only to homography
transformations.

Using the spatial order of features has a long history
in computer vision, mostly for stereo correspondence [38],
[39]. The spatial order was used to constrain the location
of matching features on corresponding epipolar lines. This
constraint was regarded as a special case emerging from the
continuity of surfaces and the assumption of opacity (objects
are usually not translucent). The conditions for the violation
of this constraint were first suggested in [40], and termed
“the forbidden zone” in [41].

Recently, the spatial orders of features in a collection of
images were used in [42] to guide a user to rotate his or
her camera such that its FOV overlaps with that of another
user’s camera. In this approach, the scene is represented
by two feature sequences obtained by aggregating partial
feature sequences, defined by the spatial order of features in
each image. This representation is then used to derive the
correct direction and magnitude of the rotation.

3 PROBLEM FORMULATION

LetM = {(pi, qj)} be a set of putative matches between two
feature sequences, p1, . . . , pN and q1, . . . , qN , in a pair of im-
ages, I1 and I2, respectively. The set of matches,M, can be
partitioned into two disjoint sets, the correct (“Good”) and
the incorrect (“Bad”) matches. Let G and B be the sets of
indexes in I1 for which the matching is correct and incorrect,

respectively. In this case, the number of matches is given by
N = NG + NB , where NG = |G| and NB = |B|. Given
N , our goal is to estimate NG. In addition, we estimate the
overlapping region (see Figure 5) of the pair of images, and
the probability of each pair to be a correct match. We do
so by analyzing the relative spatial orders of features in the
two images.

The index i of pi represents the position (the rank) of
the feature in the sequence of I1, when sorted according to
the x-coordinate of the points. Similarly, the index j of qj
corresponds to the rank in the feature sequence of I2. For
the rest of the paper, let us represent M by two sequences
of indexes, [N ] = 〈1, . . . , N〉 and σ, where (pi, qσ(i)) ∈ M
(see Figure 1). That is, the matching is represented by the
permutation σ; if i is the rank of a feature in the sequence
of I1, then σ(i) is the rank of its matched feature in the
sequence of I2.

We analyze the spatial orders of matched features in the
pair of images, which is represented by the permutation σ,
using two distance metrics on permutations. The first is
the Kendall distance [43], which corresponds to the sum
of order inversions in σ, and the second is the Spearman
Footrule (SF) distance [10], [11], which corresponds to the
sum of rank shifts in σ. We use statistical assumptions on the
distributions of the correct and incorrect matches to estimate
the desired values.

4 ESTIMATING NG

We first present three statistical assumptions on the correct
and incorrect matched pairs. Then we present the Kendall
and Spearman distance metrics and how they are used. In
Section 6 we compare the results obtained by using the two
distance metrics.

4.1 Statistical Assumptions
The following assumptions on correct and incorrect match-
ing are used, although they do not strictly hold in practice.
A1: The spatial order of the correctly matched features in I1 is

preserved in I2.
Assumption A1 is often used in stereo matching algorithms,
e.g., [38], [44]. It may not hold, for example, when the cam-
eras’ orientations differ by a relative roll (rotation around
the z-axis), or when the scene points that correspond to
a pair of features have significant depth differences (e.g.,
the pole in Figure 2). However, we show empirically that
the spatial order is mostly preserved in image pairs of real
outdoor scenes (Section 6.3.1). In Section 6.3.3 we propose
an extension of our method to estimate the roll value when
it is unavailable, as in [45], [46].
A2: The spatial order of incorrectly matched features is random.
Assumption A2 holds when the spatial location of incor-
rectly matched features in different images is arbitrary.

We note here that it does not follow from A1 and A2 that
the set of correct matches can be obtained directly by finding
the longest increasing (nonconsecutive) subsequence, L(N).
First, L(N) is expected to be longer than the set of correct
matches since it contains a mixture of correct and incor-
rect matches. In particular, for any random permutation
of size N , the expectation of |L(N)| is 2

√
N [47]. Second,
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Figure 2: An example of an order inversion due to a “pole”
that contradicts assumption A1. The blue feature in the
upper image is to the left of the green feature, and vice versa
in the bottom image.

local order inversions between neighboring correct features
result in correct matches being removed from L(N) and
hence decrease its length. In contrast, our analysis also
takes into account the order of the incorrect matches and
their interaction with the correct ones. Furthermore, the
distribution of order inversions rather than exact inference
of the correct matches is used. As a result, it better estimates
NG even for low values.

The third assumption refers to the distribution of the
features that have correct matches (and similarly incorrect
matches) in the entire sequence in each image.
A3: The ranks of correctly matched features are distributed uni-

formly in [N ] and in σ.
The interpretation of assumption A3 is that the expected
number of features in every interval of size s is sNG/N in
G and sNB/N in B, respectively. Clearly, this assumption
does not hold when there are non-overlapping regions in
the fields of view (FOV) of the two cameras, that is, regions
visible to one of the cameras and not the other. Features
in a non-overlapped region cannot have a correct match;
hence, all of them are in B. In Section 4.2.1 we present our
analysis when A3 holds, and in Section 4.2.2 we relax this
assumption. In particular, we present a method to detect the
overlapped regions in the two images, where A3 holds.

4.2 Using the Kendall Distance

The Kendall distance [10], [11] is defined as the number of
pairwise order inversions between the two sequences [N ]
and σ. Two pairs of matched features, m(i) = (pi, qσ(i)),
and m(j) = (pj , qσ(j)), have order inversion if the orders
(i, j) and (σ(i), σ(j)) are inverted.

Formally, let us define a binary function for an inversion
between m(i) and m(j) from right to left, ηrσ(i, j) = 1 if
i < j & σ(i) > σ(j). Similarly, from left to right, η`σ(i, j) = 1
if i > j & σ(i) < σ(j). An inversion between m(i) and m(j)
is defined by ησ(i, j) = ηrσ(i, j) + η`σ(i, j).

The Kendall distance is thus given by:

K([N ], σ) =
∑

1≤i≤N

∑
i<j≤N

ησ(i, j). (1)

An equivalent definition of the Kendall distance, which
will be used in this paper, is based on Hσ(i), the number of
inversions of m(i) with other matches. Let Hσ(i) = H`

σ(i)+

(a) KG (b) KB (c) KGB

Figure 3: Classification of the pairs of matches into (a) only
correct matches, (b) only incorrect matches and (c) correct
and incorrect matches. Note that, for clarity, some of the
matched pairs are omitted from (c).

Hr
σ(i), where H`

σ(i) =
∑
j<i

η`σ(i, j) and Hr
σ(i) =

∑
j>i

ηrσ(i, j).

The Kendall distance is given by

K([N ], σ) =
1

2

∑
1≤i≤N

Hσ(i). (2)

To compute NG from the value K = K([N ], σ), we
formulate K as the sum of three terms:

K = KG +KB +KGB, (3)

where KG corresponds to the number of order inversions
between correct matches, KB between incorrect matches,
and KGB between pairs of correct and incorrect matches
(see Figure 3). That is,

KG =
∑
i∈G

∑
j∈G
i<j

ησ(i, j),

KB =
∑
i∈B

∑
j∈B
i<j

ησ(i, j),

KGB =
∑
i∈G

∑
j∈B

ησ(i, j).

(4)

The expected values of KG and KB are given directly by
assumptions A1 and A2. We will show in Section 4.2.1 the
expected value of KGB under assumption A3. For NG = N
(i.e., |B| = 0), it follows directly from A1 that K = KG = 0.
On the other hand, if NG < N (i.e., |B| > 0), then K >
KB > 0. Hence, a simple case to consider is when K = 0,
which implies NG = N .

To obtain an explicit equation in NG for K > 0, the
terms in Equation 3 are normalized by the maximal possible
number of pairwise order inversions, that is, the number
of pairs in each term. The number of pairs is given by
N(N − 1)/2 in a sequence of length N , and by NGNB

between two disjoint sequences of lengths NG and NB . That
is, the normalized values denoted by ·̂ are given by:

K̂B = 2KB
NB(NB−1) , K̂G = 2KG

NG(NG−1) ,

K̂ = 2K
N(N−1) , K̂GB = KGB

NGNB
.

(5)

Using some algebraic manipulation after substituting the
terms in Equation 3 with the terms in Equation 5 and
replacing NB = N −NG, we obtain the following quadratic
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Figure 4: An example of a permutation with βl1, βl2, βr1 and
βr2 indicated.

equation in NG:

0 = N2
G[K̂G + K̂B − 2K̂GB]+

NG[2NK̂GB − (2N − 1)K̂B − K̂G]+

N(N − 1)(K̂B − K̂).

(6)

Note that N is given and K̂ can be directly computed
from the set of matches, M, using Equation 2. From as-
sumption A1 it directly follows that K̂G = 0, and from
assumption A2 it follows that E(K̂B) = 1/2, where E(x) is
the expected value of x (see our proof in the supplementary
material, and an alternative proof in [48, p. 257]). We next
show that E(K̂GB) = 1/3 for fully overlapped sequences.

4.2.1 Full Overlap
Here we consider the case that A3 holds, i.e., the two images
are of the same part of the scene.

Claim 1. Under assumptions A1-A3, E(K̂GB) = 1/3.

Proof. Using equations 4&5, the desired value, E(K̂GB), can
be written as

E(K̂GB) = E

(∑
i∈GHσ(i)

NGNB

)
=

1

NGNB

∑
i∈G

E(Hσ(i)). (7)

Since Hσ(i) = Hr
σ(i) + H`

σ(i), it is sufficient to determine
both E(Hr

σ(i)) and E(H`
σ(i)). Denote by βl1 the number of

bad indexes to the left of i and by βl2 the number of bad
indexes to the left of σ(i) (see Figure 4). We first derive
E(H`

σ(i)|βl1, βl2) and E(Hr
σ(i)|βl1, βl2) for i ∈ G, using as-

sumption A2. We then use the expected values of βl1 and βl2
to finally derive E(H`

σ(i)) and E(Hr
σ(i)).

Consider the hypergeometric probability density func-
tion (PDF), H(n, k;M,K). It is the probability for k suc-
cesses out of n draws without replacement from a population
of size M that contains exactly K successes. The analogue
for the distribution ofH`

σ(i) is that a draw is a bad index j to
the left of i, and a success is an inversion of m(j) with m(i).
That is, the bad index to the left of i is matched to a bad
index to the right of σ(i). Hence, M = NB , K = NB − βl2,
which is the number of bad indexes to the right of σ(i),
k = H`

σ(i), and n = βl1. It is well known that the expectation
of H(n, k;M,K) is given by E(H(n, k;M,K)) = nK/M ;
thus,

E(H`
σ(i)|β`1, β`2) =

β`1(NB − β`2)

NB

,

and similarly for Hr
σ(i):

E(Hr
σ(i)|β`1, β`2) =

β`2(NB − β`1)

NB

.

Using E(x) =
∑
y E(x|y)P (y) (i.e., the law of total

expectation), we get:

E(H`
σ(i)) =

i−1∑
β`1=0

σ(i)−1∑
β`2=0

E(H`
σ(i)|β`1, β`2)P (β`1)P (β`2).

Using algebraic manipulation and

i−1∑
β`1=0

β`1P (β`1) = E(β`1)

σ(i)−1∑
β`2=0

β`2P (β`2) = E(β`2)

i−1∑
β`1=0

P (β`1) = 1,

we obtain

E(H`
σ(i)) =

1

NB

E(β`1)(NB − E(β`2)).

The probabilities, P (βl1) (and similarly P (βl2)), are con-
sidered as another hypergeometric PDF,H(n, k;M,K). The
analogue here is that a draw is an index to the left of i, and a
success is an incorrect index to the left of i. Hence, M = N ,
K = NB , n = i − 1 and k = βl1. The hypergeometric
expectation is given by E(βl1) = (i − 1)NB/N ≈ iNB/N .
Assumption A3 implies that σ(i) ≈ i, so approximately
E(βl1) = E(βl2) = iNB/N ; thus,

E(H`
σ(i)) = E(Hr

σ(i)) = NB
i
N

(
1− i

N

)
,

so together

E(Hσ(i)) = E(H`
σ(i)) + E(Hr

σ(i))
= 2NB

i
N

(
1− i

N

)
.

Substituting E(Hσ(i)) in Equation 7 we get:

E(K̂GB) = 1
NGNB

∑
i∈G

2NB
i
N

(
1− i

N

)
= 2

NG

(
1
N

∑
i∈G

i− 1
N2

∑
i∈G

i2
)
.

Under assumption A3, we approximate the sequence of
indices, i ∈ G, by an arithmetic sequence, ak = kd = i for
1 ≤ k ≤ NG, where d =

⌊
N
NG

⌋
. The sum of an arithmetic

sequence is given by
∑n
k=1 ak = n(a1 + an)/2; thus, for our

sequence,
∑NG
k=1 ak = NG(

⌊
N
NG

⌋
+ NG

⌊
N
NG

⌋
)/2 ≈ 1

2NGN .
In the supplementary material it is shown that

∑
i∈G

i2 ≈
1
3NGN

2; thus,

E(K̂GB) = 2
NG

(
1
N

∑
i∈G

i− 1
N2

∑
i∈G

i2
)

= 2
NG

(
1
N

1
2NGN − 1

N2
1
3NGN

2
)

= 1
3 .

Substituting E(K̂G), E(K̂B) and E(K̂GB) with their es-
timated values in Equation 6, we obtain the following
quadratic equation in NG:

0 = 1
6N

2
G − ( 1

2 −
1
3N)NG −N(N − 1)( 1

2 − K̂). (8)
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O1 O2 R2L1

I1 I2

Figure 5: A partial overlap between a pair of images from
the ZuBuD dataset.

There are two solutions to this equation: when K̂ > 1/2,
we set NG = 0, and when 0 ≤ K̂ ≤ 1/2, we take the only
solution in the range [0, N ].

4.2.2 Partial Overlap

When parts of the scene appear in only one of the images
(e.g., Figure 5), assumption A3 does not hold. In this case,
the estimation of NG given by Equation 8 is an underestima-
tion of NG (see Claim 2 below). We next describe a method
to estimate NG by computing the regions of overlap, using
this observation.

We assume that each image can be divided into at
most three regions, left, center, and right. The center region
corresponds to the same scene region which appears in the
other image. Formally, the sequence [N ] is partitioned into
three intervals: L1, O1 and R1, where L1 and R1 consist of
features that appear only in I1 and hence no correct matches
exist for them. The lowest and highest ranks of the features
with correct matches in I1, `1 and h1 define the interval
O1 = [`1, h1]. Similarly, we define O2 = [`2, h2] .

Note that an index of an incorrect match, i ∈ O1 ∩ B,
is not necessarily matched to an index in O2. To use our
results for the fully overlapped sequences (Section 4.2.1),
we discard such indexes and define the fully overlapped
subsequences, Ô = (Ô1, Ô2), as follows:

Ô1 = {i | (i ∈ O1) ∧ (σ(i) ∈ O2)} , (9)

and Ô2 is the sequence of indexes of the matched features
to Ô1.

The values of N , NG, and K̂ on the sequences defined by
a candidate pair ω = (Ô1, Ô2) are given by N(ω), NG(ω),
and K̂(ω). These new values can be used in Equation 8 to
computeNG(ω) by solving the quadratic equation as before:

0 = 1
6N

2
G(ω)− ( 1

2 −
1
3N(ω))NG(ω)

−N(ω)(N(ω)− 1)( 1
2 − K̂(ω)).

(10)

The following claim allows us to determine ω∗, which is
the region of overlap between the pair of images, and
hence NG(ω∗).

Claim 2. The expected maximal value of NG(ω), for any ω, is
obtained for NG(w∗), where w∗ = arg maxwNg(w), i.e.,

max
ω

NG(ω) = NG(ω∗). (11)

We use assumptions A1-A3 to prove it (see the appendix

attached to the supplementary material). That is, the de-
sired NG is the maximal value obtained for all possible ω’s.

For efficiency, we avoid considering all possible ω’s
given by the 4-tuples. Instead, we consider only a sample
of the subset of intervals defined by a single parameter q.
The set of intervals considered is as follows:

Sq = {(`, h)|` = tq + 1, h = t′q, 1, 0 < t < t′ ≤ N

q
}.

The value of NG(ω) is computed for each ω ∈ Sq × Sq . We
refer to this algorithm, which considers all the q-intervals in
I1 and I2, as K2.

To further improve efficiency, we compute sequentially
the max value obtained for the q-intervals of I1 and the
entire sequence of I2. That is, we sample the valueNG(ω) on
ω ∈ [N ] × Sq . Then, we fix the detected optimal q-interval,
[`∗1, h

∗
1], in I1 and search over all the q-intervals of I2. That

is, we sample the value NG(ω) on ω = [`∗1, h
∗
1]×Sq to arrive

at our final estimate for ω∗ and NG(ω∗). We refer to this
algorithm as the K1 algorithm.

4.2.3 Kendall Distance Computation & Complexity

The Kendall distance can be computed on a sequence of
length N in O(N logN) steps using the merge sort algo-
rithm [49], applied on σ. The basic idea is that the number of
inversions can be computed at the merge stage (when merg-
ing two sorted arrays into one). The number of inversions
that should be added to the count is the number of elements
that remain in the left array when the next minimal element
is taken from the right array.

For partial overlap, we need to compute w∗ (Equa-
tion 11). It requires multiple Kendall distance computations
for various intervals. We compute these distances efficiently
by first computing the Kendall distance for q disjoint in-
tervals of length N/q, using the merge sort algorithm. The
Kendall distance of an interval of size dN/q is obtained
by counting the inversions when merging two successive
intervals of size d1N/q and d2N/q, where d1 + d2 = d.
Using this method, the time complexity for the K2 method
is O(N logN), where typically in our implementation the
constant is ∼ 21 when q = 10. Similarly for the K1 method,
the time complexity is O(N logN), where typically in our
implementation the constant is ∼ 2. The full analysis of the
complexity is given in the supplementary material.

4.3 The Spearman Footrule Distance

We next present an alternative distance measure between
permutations for computing NG. The Spearman Footrule
(SF) distance [10], [11] is defined to be the sum of
rank differences between matching features. That is, let
(pi, qσ(i)) ∈ M, and denote by λ(i) = |σ(i)−i| the absolute
difference in the ranks of pi and qσ(i) in the sequences of I1
and I2, respectively. Then the SF distance is defined by

D =
N∑
i=1

λ(i). (12)

Let the sets of absolute rank differences in G and B be
ΛG = {λ(i) | i ∈G} and ΛB = {λ(i) | i ∈B}, respectively.
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Figure 6: A graph of order inversions, Hσ . The x-axis
corresponds to the rank of the feature in I1, and the y-axis
corresponds to the percentage of order inversions out of the
maximal value, N − 1. The blue and red dots correspond to
the inliers and outliers, respectively (computed by USAC).
The green and cyan lines correspond to the range of inver-
sions for the incorrect matches.

The means of these sets are given by

ΛG = 1
NG

∑
i∈G

λ(i),

ΛB = 1
NB

∑
i∈B

λ(i).

To show that the value D is a function of E(ΛG), E(ΛB),
N and NG, we split the sum in Equation 12 into two terms
and obtain:

D =
∑
i∈G

λ(i) +
∑
i∈B

λ(i)

=
∑
i∈G

λ(i)
NG

NG +
∑
i∈B

λ(i)
NB

NB

= ΛGNG + ΛBNB.

(13)

It follows that NG can be directly computed using the
estimated expectations ΛB and ΛG.

Generally, ΛG > 0. However, when full overlap is con-
sidered, it follows directly from assumption A3 that ΛG ≈ 0,
i.e., ΛG is small. We use assumption A2, that the spatial
order of the outliers is random, to show that ΛB = N/3 (see
[50]). Using some algebraic manipulation after substituting
the terms in Equation 13 and replacing NB = N − NG, we
obtain the following equation in NG:

NG = N − 3D

N
. (14)

When partial overlap is considered, we claim that, sim-
ilarly to the method for partial overlap in the Kendall
distance (Section 4.2.2), the estimation of NG given by Equa-
tion 14 reaches its maximal value for the fully overlapped
sequences, Ô1 and Ô2. Therefore, we maximize NG in
Equation 14 (rather than Equation 10) using the same search
method on intervals.

5 MATCHING PROBABILITIES

We propose to compute a probability, PK(i), that a match
m(i) = (pi, qσ(i)) is correct. We do so using the number
of inversions of matching pairs with m(i) as well as the
estimation of Ô1, Ô2 and NG. This probability can then be

used as a likelihood function for sampling matches, in par-
ticular in guided RANSAC methods (Section 1). We present
the full derivations of PK(i). However, due to efficiency
considerations, in practice we use only its approximations.

When i /∈ Ô1 or σ(i) /∈ Ô2, we set PK(i) = 0 (or a
small value), since, by the definition of Ô1 and Ô2, i ∈ B.
Hence, w.l.o.g. we consider here only fully overlapping
sequences. A typical example of inversions in a fully over-
lapped permutation is presented in Figure 6, where the
number of inversions, Hσ(i), is plotted as a function of
the index i. As expected from the analysis presented in
Section 4.2.1, the distribution of i ∈ G (red dots) is around
the function i

N (1 − i
N ), where N = |Ô1|. For i ∈ B (blue

dots), Hσ(i) is approximately uniformly distributed in a
range that depends on i.

We next present the computation of PK(i) for i ∈ G,
given NG, H1

σ(i) and H2
σ(i) (defined in Section 4.2). Using

Bayes’ theorem it is given that

PK(i) = P
(
i ∈ G

∣∣H1
σ(i), H2

σ(i)
)

=
P
(
H1
σ(i),H

2
σ(i)
∣∣i∈G)P(i∈G)

P
(
H1
σ(i),H

2
σ(i)
) .

(15)

Let us use the following notations: PH|G =
P
(
H1
σ(i), H2

σ(i)
∣∣i ∈ G

)
, PH|B = P

(
H1
σ(i), H2

σ(i)
∣∣i /∈ G

)
,

PG = P
(
i ∈ G

)
and PB = P

(
i /∈ G

)
= 1 − PG. Then, we

also use the law of total probability for the denominator
and obtain:

PK(i) =
PH|GPG

PH|GPG+PH|BPB
. (16)

It is left to show how each of the right-hand terms in
the above equation is estimated. Under the assumption of
fully overlapped sequences, the probabilities PG and PB are
given by the ratio of the correct and the incorrect matches
to N , respectively; that is, PG = NG/N and PB = NB/N .
We next describe our estimation of PH|G.

Estimating PH|G

Under assumption A1, correct matches are not inverted with
other correct matches. Hence, only inversions with incorrect
matches are considered for computing PH|G. Let Sβ be the
set of all possible β = (βl1, β

l
2) values:

Sβ =
{
β
∣∣∣0 ≤ βl1 ≤ NB, 0 ≤ βl2 ≤ NB

}
.

Recall that βl1 and βl2 are defined in Section 4.2.1, where βl1
is the number of indexes with incorrect matches to the left
of i and βl2 is the number of indexes to the left of σ(i).

Since β is unknown, we compute PH|G using the law of
total probability over the set of possible values, β ∈ Sβ :

PH|G =
∑
β∈Sβ

P (H1
σ(i), H2

σ(i)|i ∈ G, β)P (β). (17)

For efficiency, PH|G is approximated by ignoring terms in
the sum that are likely to be negligible; we use only k values
of β ∈ Sβ where βl1 and βl2 are close to their expectations
given by (i − 1)PB and (σ(i) − 1)PB , respectively. In our
implementation we take the 5 values in a small window
around each expectation (2 lower and 2 higher), resulting in
k = 25.

The probability P (β) is given by P (β) = P (βl1)P (βl2)
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since βl1 and βl2 are assumed to be independently dis-
tributed. That is, P (β) is the probability that both i and
σ(i) have βl1 and βl2 incorrectly matched indices to the
left of them. To compute P (βl1) (and similarly P (βl2)), we
consider the hypergeometric PDF, H(n, k;M,K) (see proof
of Claim 1). Recall that the analogue here is that a draw is
an index to the left of i, and a success is an incorrect index
to the left of i. Hence, M = N , K = NB , n = i − 1 and
k = βl1. Putting it all together, we obtain:

P (β) = H(i− 1, βl1;N,NB)H(σ(i)− 1, βl2;N,NB).

We next estimate the probability P (H1
σ(i), H2

σ(i)|i ∈
G, β) of Equation 17, where bothH1

σ(i) andH2
σ(i) inversions

occur given β. Under the independence assumption, it is
given by:

P (H1
σ(i), H2

σ(i)|i ∈ G, β)

= P (H1
σ(i)|i ∈ G, β)P (H2

σ(i)|i ∈ G, β).

The probability P (H1
σ(i)|i ∈ G, β) (and similarly

P (H2
σ(i)|i ∈ G, β)) is modeled as another hypergeometric

PDF,H(n, k;N,K), discussed in the proof of Claim 1. Recall
that the analogue here is that a draw is a bad index j to the
left of i, and a success is an inversion mj with mi. Hence,
N = NB , K = NB − βl2 which is the number of bad indexes
to the right of σ(i), k = H1

σ(i), n = βl1. Hence,

P (H1
σ(i)|i ∈ G, β)

= H(βl1, H
1
σ(i);NB, NB − βl2)H(βl2, H

2
σ(i);NB, NB − βl1).

For efficiency, we approximate the hypergeometric PDFs
by Gaussian PDFs with the same mean, nK/M , and vari-
ance, nK(N−K)(N−n)

N2(N−1) , of the hypergeometric PDFs.

Estimating PH|B:
Here we consider the number of inversions of a bad index,
i. Similarly to PH|G, PH|B is given by

PH|B =
∑
β∈Sβ

P (H1
σ(i), H2

σ(i)|i ∈ B, β)P (β),

where P (β) is defined above. We first note that an incorrect
match is inverted with both correct and incorrect matches.

The number of inversions with correct matches can be
directly computed given β, i and σ(i). It is given by the
difference in the number of good indices to the left of i and
to the left of σ(i); that is, γ = |(i−1−βl1)− (σ(i)−1−βl2)|.
This follows from the assumption that the order of correct
matches is preserved (assumption A1).

The inversions due to only incorrect matches are given
by H1

σ(i) − γ and H2
σ(i) − γ. To compute PH|B , we use

the same probabilistic derivations as for PH|G, while using
H1
σ(i)− γ and H2

σ(i)− γ instead of H1
σ(i) and H2

σ(i).
An approximation of PH|B is required since the above

computations are time consuming. LetHhigh(i) andHlow(i)
be, respectively, the high and low boundaries for Hσ(i) (see
cyan and green curves in Figure 6). Hhigh(i) is given for the
case where |σ(i) − i| is the largest, which is either σ(i) = 1
(i.e., i > N − i) or σ(i) = N (i.e., i < N − i). That is, when
i > N − i, then Hhigh(i) = i− 1, and when i < N − i, then
Hhigh(i) = N − i− 1.

In theory,Hlow(i) = 0. However, in practice it is unlikely

DS Value KGT K K2 K1 SGT S S2 S1

T1 µ(NG) 0.6 14.5 3.2 4 1.1 21.4 10.8 9.7
µ(O) – – 0.91 0.89 – – 0.8 0.85

Runtime – 0.6 45.1 6.3 – 0.01 322 120
T2 µ(NG) 0.5 10.3 3.2 3.6 0.8 18.3 8.6 7.5

µ(O) – – 0.9 0.8 – – 0.84 0.86
Runtime – 0.6 42.3 6.1 – 0.01 319 116

Table 1: The mean normalized absolute error (percentage)
in the estimation of NG in the synthetic datasets. The first
and last 3 rows correspond to datasets “Test 1” and “Test 2”,
respectively. Irrelevant data is marked by ‘–’.

that Hσ(i) will be lower than the expected number of
inversions as if it were a correct match (i.e., on the green
curve in Figure 6). Thus, we set Hlow(i) = E(Hσ(i)) =
2NB

i
N

(
1− i

N

)
, where i ∈ G (as in the proof of Claim 1).

We then model PH|B as a uniform distribution in the range
[Hlow(i), Hhigh(i)]; that is,

PH|B =

{
1

Hhigh(i)−Hlow(i) Hσ(i) ∈ [Hlow(i), Hhigh(i)]

0 Hσ(i) /∈ [Hlow(i), Hhigh(i)].

6 EXPERIMENTS

Our algorithms are implemented in MATLAB and tested
on an Intel i3-2130 CPU with 12 GB of RAM. We present
the results of computing NG and the overlapping region
estimations on both synthetic and real data (Section 6.1),
and then we demonstrate the effectiveness of our method
for the three proposed applications (Section 6.2). Finally, we
present in Section 6.3 experiments to show the validity of
our assumptions and the robustness of our methods.

For all experiments we extracted SIFT features [7] using
VLFeat [51] with the default parameters. The number of
features per image varies from a few hundreds to a few
thousands depending on the dataset. To match the features
between a pair of images, we used the Lowe ratio test [7],
i.e., the ratio of the distances to the closest NN and the
second closest NN must be < 0.8.

6.1 Estimation of NG and the Overlapped Regions

We tested 6 variants of our method for computing NG using
the Kendall and the Spearman Footrule distances. For each
distance between permutations we considered the computa-
tion of NG on the entire image without removing the image
margins (K and S algorithms). In addition, we considered
two variants in which the margins were removed, where
the window of overlap was computed using sequential
sampling (K1 and S1) and simultaneous sampling (K2 and
S2) (see Section 4.2.2). The results, in these cases, were the
estimates NG as well as the overlapped regions O1 and O2.
For evaluation purposes we also considered KGT and SGT

(for Kendall and SF, respectively), where the ground truth
(GT) of O1 and O2 was given, and only NG was computed.

We defined µ(NG) to be the percent of error out ofN , i.e.,
|NG −NGT

G |/N . The accuracy of the overlap was measured
using intersection over union (IoU) of the detected interval
with respect to the ground truth: µ(O) = |O ∩ OGT |/|O ∪
OGT |. For each pair of images, we averaged the IoU for the
two detected intervals, O1 and O2.
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Figure 7: Scatter plots for synthetic experiment Test2; the top
and bottom scatter plots are for the Kendall and Spearman
distances, respectively.

6.1.1 Synthetic Data

A matching between features in a pair of images is depicted
by a permutation. We generated 500 different permutations
of N = 1000 indexes, using our assumptions A1-A3, for
various values of O1, O2 and NG.

Test 1: We set NG = 300; the size and location of O1

and O2 were randomly chosen (|O1|, |O2| > NG). Table. 1
presents µ(NG), µ(O) and the mean runtime (displayed in
milliseconds).

As expected, the best results were obtained for KGT

where the overlapped windows, O1 and O2, are given. The
worst results were obtained for K since A3 does not hold
when there exists only a partial overlap (|O1|, |O2| < N ),
and hence NG is underestimated. Finally, K1 was less
accurate than K2 since the former traverses only a subset of
overlap windows. The accuracy of the computed intervals
O1 and O2 was similar for both K1 and K2 (µ(O) = 0.89
and µ(O) = 0.91). The runtime of K was an order of mag-
nitude faster than K1 and K2 (0.6ms vs 6.3ms & 45.1ms),
but the error was unacceptably large (14.5%). The results
obtained by K1 and K2 were very good and comparable
(4% and 3.2%). However, K1 was an order of magnitude
faster than K2.

The results of the four Spearman based methods fol-
lowed a similar trend, except for S1, which was slightly
more accurate than S2. Overall, the SF based methods were
less accurate both in computing NG and the overlapped
regions, O1 and O2. In addition, SF was more time con-
suming in our implementation. Hence, Kendall is superior
to Spearman.

Test 2: We setNG between 0 to 1000, and randomly choseO1

and O2 as in Test 1. The results of are presented in Table 1,
and are similar both in accuracy and runtime to those of
Test 1. In addition, scatter plots of the eight algorithms
(four for Kendall and four for SF) with respect to the
GT are presented in Figure 7. A perfect score corresponds
to the diagonal. As expected, the K and S algorithms

underestimated NG, and hence their results are above the
diagonal. K2 and K1 are similar in accuracy and slightly
underestimate NG. The results for KGT , when the ground
truth windows were given, were very close to the diagonal.

These results are probably due to the sampling used
for estimating O1 and O2, since for KGT , the errors were
negligible. For both tests, K1 was almost an order of mag-
nitude faster than K2. The S2 and S1 algorithms were
similar in their error, µ(NG), however, worse than the K2

and K1 algorithms. Note that as expected, when the inlier
rate, NG/N , is very low (see the “zoom-in” in Figure 7), the
results are less accurate (and more variant) than when the
inlier rate is high.

6.1.2 Real Data
We used the Middlebury 2005, 2006, and 2014 datasets [52],
[53], [54], for real data with GT (denoted by MFull05&06
and MFull14, respectively). We also evaluated our method
on the USAC dataset [2] and BLOGS dataset [6] (combined),
the ZuBuD dataset [55], and the Yorkminster [56], for which
no GT is available (denoted by U&B, ZuBuD and York,
respectively). We ran the BEEM [1] and USAC [2] algorithms
(both with their default settings), where the number of
inliers returned is compared to NG. The lowest and highest
inlier indexes of the computed matched features were used
as the GT for O1 and O2. Figure 8 presents the complete
comparison details for the datasets, which are described
next.

6.1.3 Middlebury Full Overlap
The mean errors and runtimes (in milliseconds) are pre-
sented in Table 2. The errors, µ(NG), were similar for K,
K2 and K1, while K2 was much slower. The errors for S,
S2, S1 were also similar, however, better than the Kendall
methods in MFull14 and worse in MFull05&06. The SF
methods, S2 and S1, were significantly slower than the
Kendall methods, K2 and K1, while the S method was
significantly faster than K. K1 and BEEM were similar in
µ(NG), while USAC was more accurate. The runtime of K1

was between one and two orders of magnitude faster than
USAC and BEEM runtimes.

6.1.4 Middlebury Partial Overlap
The overlap between image pairs in the Middlebury
datasets is very large (about 90% of the image). Therefore,
we vertically cut them to obtain smaller overlaps, where the
location of the cut was chosen randomly. This enabled us
to test the partial-overlap method (Section 4.2.2) against the
GT (Table 2). These datasets are denoted by MPartial05&06
and MPartial14 for Middlebury 2005&2006 and 2014, re-
spectively. The errors of both K2 and K1 were low and
similar to the full overlap case, demonstrating the success
of the partial overlap method. However, the runtime was
much faster for K1. The errors for S2 and S1 were low
and similar to the full overlap case for MPartial14, however,
quite high for MPartial05&06. The error, µ(NG), was large
for methods K and S since they ignore the margins. As in
the full overlap case, BEEM was similar in accuracy to K2

and K1, while USAC was more accurate. The error for the
overlap, µ(O), was 0.89, 0.89, 0.81 and 0.8 for K2, K1, S2

and S1 methods, respectively (see examples in Figure 9).
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MFull14 MFull05&06 MPar14 MPar05&06 U&B ZuBuD Yorkminster
#im pairs 23 27 23 27 21 201 14196

GT 1584 2776 712 1032 138 69 31
µ t µ t µ t µ t µ t µ t µ t

BEEM 9.9 2065 13 4198 5 1825 5.3 2344 – 1444 – 692 – 1770
USAC 3 1782 3 1670 3.6 1152 4.1 1276 8.6 1440 7.3 1257 4.5 1310
K 10 8.2 3.3 13.6 11.5 4.3 23.1 6 11 2.6 9.3 0.9 8.8 0.1
K2 9.9 280 3.3 412 6.8 162 6.3 223 8.8 125 6.1 94 7.3 40
K1 9.9 38 3.3 53 7.1 22.6 6.7 30 9 18 6.5 11 7.8 4.7
S 8.7 0.5 5.8 0.51 17.4 0.51 32.9 0.52 11.2 1.3 6.5 0.5 11.8 0.05
S2 8.7 1999 5.7 4401 7.5 834 10.2 1306 8.4 343 6.1 151 9.1 149
S1 8.7 680 5.8 1523 8.3 262 11.7 427 8.7 104 6.1 34 9.2 42

Table 2: The mean normalized absolute error (percentage), µ (short for µ(NG)), of the Kendall and Spearman based methods
in comparison to the ground truth (its mean, NGT

G ) for the left four datasets (columns) and to BEEM (its mean, |GBEEM |)
for the right two datasets (columns). The mean runtime, t, is also presented for each of the methods (in milliseconds).

Figure 8: Scatter plots for the real datasets. From left to right: K, K2 and K1 methods. The comparison is against BEEM.
The axes correspond to NG/N .

Figure 9: Examples for the estimation of the overlap between
pairs of images. The columns correspond to pairs of images
from the ZuBuD dataset.

6.1.5 USAC & BLOGS, ZuBuD and Yorkminster

Since no GT is available for these datasets, the estimation
results were compared to BEEM (see Table 2). The errors for
K2, K1, S2, S1 and USAC were similar (K and S were
larger as expected). K2 and K1 were one and two orders of
magnitude faster than BEEM and USAC, respectively, while
S2 and S1 were about one order of magnitude faster than
BEEM and USAC.

Yorkminster: this dataset was collected by [56] for scene
reconstruction from an Internet image search engine. It con-
tains some outlier images, i.e., images that do not capture
the scene. Since this dataset is very large (3368 images), we
use only every twentieth image, starting from the first, to
get a total of 169 images. To evaluate the methods we use all
(169 · 168)/2 = 14196 pairs of images. Note that we present
only a summary of the results for this dataset (in Table 2)

due to its large size.

6.2 Applications
We next present three applications of NG estimation, which
were briefly discussed in the Introduction.

6.2.1 Halting Condition for RANSAC
Ideally, RANSAC should halt when the cardinality of the in-
liers set equals the number of correct matches. As this num-
ber is usually unknown, the classic halting condition [57,
Chapter 11.6] in adaptive RANSAC methods is based on
the probability that at least one consensus set was con-
structed from an uncontaminated minimal set of matches.
This probability is computed as a function of the maximal
number of inliers, computed up to a given iteration. The
method halts when the confidence in the solution is high;
the halting condition is based on the size of the consensus
set. We propose an alternative halting condition based on
the estimatedNG computed by our algorithm. It can be used
directly to halt RANSAC, when a consensus set of at least
NG matches has been found.

We tested the effectiveness of the proposed halting
condition on the abovementioned datasets. The USAC [2]
algorithm was applied using the original halting condition
as well as ours. The results of the inlier rate and runtime
of the two versions are presented in Figure 10. The total
runtime with our halting condition was 69% of the runtime
of the original halting condition. This runtime improvement
was obtained with nearly no loss of inliers (error of 0.78%).
The decrease in runtime (while the accuracy is preserved) is
mostly due to image pairs with a low inlier rate; the number
of iterations required with the original halting condition is
inversely proportional to the inlier rate. Thus, low inlier
rates require longer runtimes.
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6.2.2 Improving the Efficiency of the SfM Pipeline
A major time-consuming stage in the pipeline of SfM
methods [3], [4], [12], [13] is robustly matching all image
pairs. The naı̈ve method is (i) to match all pairs of images
using `2 distance and Lowe’s ratio test [7], and (ii) apply
RANSAC to obtain the fundamental matrices and filter out
incorrect matches, which typically takes ∼ 25% of the total
runtime of the entire SfM pipeline (e.g., [4]). We followed
the dominant paradigm to decrease the runtime of SfM by
filtering spatially unrelated image pairs. This reduces the
number of pairs for which (ii) is computed.

Existing methods are typically based on BoW [14],
which reduces the runtime of both (i) and (ii). In BoW ,
each image is represented by a histogram of the visual
words from the vocabulary. The similarity is defined by
the `2 distance between the images’ corresponding his-
tograms, weighted by the term frequency to inverse doc-
ument frequency (tf-idf). Since BoW is agnostic to the
spatial configuration of the matches, methods like Hough
Pyramid Matching (HPM ) [18] were proposed to fill in
this gap. HPM uses a pyramid to partition the space of
similarity transformations into bins. First, putative matches
are obtained using a standard visual vocabulary. The local
shape, i.e., position, scale and orientation, of the putative
matches is then used to assign them to the pyramid bins.
Matches that fall into the same bin are more likely to be
inliers, while isolated matches are marked as outliers.

Our method filters unrelated images based on the esti-
matedNG. That is, RANSAC is run only on image pairs with
sufficiently large NG (defined by a threshold). We ran both
K1 and K2 on a pair of images after (i) was performed;
we denote the first such image by KL

1 and the second by
KL

2 . The pairwise matching was computed using Lowe’s
ratio test [7]. We also tested alternative methods, KV

1 and
KV

2 , for computing NG based on matches obtained on
visual words instead of pairwise matching using (i). This
significantly reduced the number of pairs to which (i) was
applied and hence the total runtime. Because 1-to-1 match-
ing was not guaranteed, this method resulted in matching
ambiguities. To obtain the required 1-to-1 matching, we
simply randomly discarded matches.

We compared these variants of our method with filtering
unrelated image pairs using BoW and HPM . We denote
by M = {KV

2 ,K
V
1 ,K

L
2 ,K

L
1 ,BoW ,HPM} the set of

considered methods. Each method was tested on the fol-
lowing three datasets: “LunchRoom” [58], “Barcelona” [59]
and “Person-Hall” [60], which consist of 72, 191 and 330
images, respectively.

We evaluated the algorithms based on the recall and
runtime. The ground truth was taken to be the set of image
pairs that have more than 16 inliers according to USAC [2].

We computed the total runtime required to obtain the
set of correct matches after RANSAC was applied to the
relevant image pairs, assuming that the set of features in
each of the images is given. The naı̈ve method consists of
computing matches and RANSAC on all image pairs. This
was taken as a baseline. For KL

1 (and KL
2 ), the runtime

consisted of computing matches using Lowe’s ratio test,
computing NG, and running RANSAC only on image pairs
with NG > α1. For KV

1 (and KV
2 ), the runtime consisted

of computing matches using the vocabulary, computing

Figure 10: USAC for inlier rate estimation without the halting
condition (y-axis) vs with the halting condition (x-axis).

NG, and then computing matches using Lowe’s ratio test
followed by RANSAC only on image pairs with NG > α2.
The runtime of BoW consisted of the same components as
KV

1 , except for the filtering step. In BoW , the runtime of
the histogram computations and the tf-idf was taken instead
of the NG computation. A threshold α3 was used to define
the set of filtered pairs. In HPM the runtime included all
components of the method including the computation of
matches using the vocabulary, as in KV

1 ,KV
2 and BoW .

Let the runtime-ratio be defined by the ratio between
the runtime of each method and the runtime of the naı̈ve
method. We present the runtime-ratio as a function of the
recall. The recall was taken to be the ratio between the
number of correctly detected overlapped image pairs and
the ground truth. The results are presented in Figure 11(a).
(Each graph point is defined by the relevant threshold.)

We analyzed the tradeoff between the runtime-ratio and
the recall when computing NG using vocabulary matches
(KV

1 and KV
2 ) or pairwise matches (KL

1 and KL
2 ). The

results show that although the runtime of computing NG

using pairwise matches was longer than when using the
vocabulary, its higher recall significantly reduced the num-
ber of pairwise RANSAC calls. As a result, KL

1 (and KL
2 )

performed better than KV
1 (and KV

2 ). Consider, for ex-
ample, the recall of 0.8 in the dataset “Barcelona”. The
runtime ratios are given by 0.35 and 0.39, for KL

1 and KL
2 ,

respectively, (and similarly, by 0.38 and 0.56 for KV
1 and

KV
2 , respectively.)
Kendall based methods (except for KV

1 ) generally
achieved better results than the BoW method, where in the
abovementioned example, the runtime ratio was 0.54. KL

2

generally achieves significantly better results than HPM ,
where in the abovementioned example, the runtime ratio
was for HPM was 0.4. KL

1 is slightly worse than HPM ,
while KV

1 and KV
2 are significantly worse than HPM .

To analyze the runtime spent on correctly detected pairs,
we defined the effective-runtime ratio as the ratio between
the runtime spent on correctly detected pairs out of the
total runtime. The total runtime of each algorithm is de-
fined above. For computing the runtime spent on correctly
detected pairs, we discarded the runtime of RANSAC calls
spent on incorrectly detected pairs from the total runtime.
For the vocabulary based methods, we also discarded the
time for computing the pairwise matching using Lowe’s
ratio test on the incorrect pairs. The effective-runtime ratios
as a function of the recall are presented in Figure 11(b). The
general behavior was similar to the runtime ratio.

To conclude, the accuracy of the Kendall based algo-
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rithms (KL
1 with KL

2 ) compensated for the time consum-
ing pairwise matching. Hence, discarding unrelated image
pairs using the Kendall based algorithms produced superior
results than for the BoW algorithm.

6.2.3 Guided RANSAC

Computing matching probabilities, PK , can be useful for
several applications, including guided RANSAC. To eval-
uate our estimate for PK , we compared the mean inlier
precision of the x ≤ 200 highest ranked matches, given
by PK (Figure 12), to the Lowe ranking [7], denoted by PL.
The mean precision was calculated on all image pairs from
all datasets from Section 6.1.2. The curve for the mean
PK (green) is below the curve for the mean PL (red) for
the first 50 matches, and then vice versa. The blue curve
shows a combination of the two probabilities, given by
PC = PKPL

PKPL+(1−PK)(1−PL) . PC is higher than both PK and
PL if they are high, and it is lower than both PK and PL
if they are low. Using low values of x, PC outperformed
its components. For higher values of x, our estimation was
better. To conclude, PK , which is mostly based geometry,
is a comparable alternative to PL, which is solely based on
patches’ appearance. We note here that we found the actual
difference in runtime when using PK , PC or PL in a guided
RANSAC method to be negligible.

6.3 Validity of Assumptions

We tested the validity of our assumptions and the sensitivity
of our method to these assumptions. Here we present the
results and provide an algorithm for using our method to
estimate the roll rotation (Section 4.1).

6.3.1 Measured Values of K̂G, K̂B and K̂GB

Assumptions A1-A3 (Section 4.1) were used to deduce the
values K̂G = 0, K̂B = 1/2 and K̂GB = 1/3. We tested
these values on real data (same datasets as in Section 6.1.2).
The three values were measured using the inliers and
outliers, taken from the GT in the Middlebury datasets,
and from the BEEM estimation in the USAC&BLOGS
and ZuBuD datasets.

Table 3 presents the results of this experiment. The
mean values for K̂G, K̂B and K̂GB were 0.09, 0.43 and
0.36, respectively. These values show that our assumptions
roughly hold on real datasets. One significant deviation is
dataset MFull14, where K̂B = 0.28 and K̂GB = 0.18. This
is probably due to a skewed distribution of inversions for
the incorrect matches of repeated pattern. In some images
there is a repeated pattern, e.g., basket, bicycle rim, which is
located only in a small part of the image. This is in contrast,
for example, to MFull05&06, where repeated patterns are
spread over a large part of the image.

We also tested the same values when the sequences, [N ]
and σ, were defined by the order in the y-axis. The measured
values were K̂G = 0.02, K̂B = 0.37 and K̂GB = 0.25. This is
a significant deviation from the expected values. It suggests
that our choice to use the x-order rather than the y-order is
expected to yield more accurate results.

K̂G K̂B K̂GB

Assumed 0 0.5 0.33
All Datasets 0.09 0.43 0.36

MFull14 0.02 0.28 0.18
MFull05&06 0.02 0.39 0.3

MPar14 0.05 0.43 0.39
MPar05&06 0.07 0.5 0.38

U&B 0.1 0.46 0.39
ZuBuD 0.1 0.44 0.38

All Datasets Y-Axis 0.02 0.37 0.25

Table 3: Real values for K̂G, K̂G and K̂G, obtained from
the real datasets (see Section 6.1.2). From left to right: the
assumed values, the computed values for all datasets, the
computed values for the real datasets, and the computed
values for all datasets on the y-axis.

6.3.2 Deviation from Assumption A1
The assumption that the order of correct matches is pre-
served (A1) only roughly holds in real data (K̂G = 0.09).
To systematically test the effect of the deviation from this
assumption on the computation of NG, we repeated the syn-
thetic experiments of Section 6.1.1, with K̂G ≥ 0. For K̂G =
0 (the original experiment) the error was µ(NG) = 4. For
K̂G ∈ {0.002, 0.05, 0.1, 0.15}, the errors were 4.1, 6.2, 8.5
and 10.7, respectively. The results show that our method
is robust to a relatively large deviation from assumption
A1. For example, where K̂G = 0.002 and K̂G = 0.02, which
correspond, respectively, to 90 and 900 inversions, the errors
were µ(NG) = 4.1 and µ(NG) = 5. Note that if we were to
switch one-third of the correct matches with their correct
neighbor, we would obtain approximately 100 inversions.

6.3.3 The Roll Rotation (z-axis Rotation)
When there is a roll rotation between the cameras, assump-
tion A1 does not strictly hold. Particularly, the estimated NG

value is expected to be lower than the correct one.
We tested the estimatedNG as a function of the roll angle

by generating rotated images using α ∈ [−90, 90] angles in
10 degree steps. As expected, the value of NG decreases, but
at a moderate rate. Hence, small changes (of < 10 degrees)
of the relative roll do not dramatically affect the results.

Moreover, although not the focus of our method, we
also tested whether maximal estimate of the NG value for
different rolls can be used to estimate the relative roll. The
mean error in the estimated roll angle between the image
pairs of the ZuBuD dataset (Section 6.1.5) was∼ 5.7 degrees.
In most runs we tested, the maximal value for NG is given
for the correct roll angle. Examples from the ZuBuD dataset
is presented in the Appendix (in the supplemental material).

Since the sensitivity of our method to the roll angle is
low, its accuracy for roll estimation as is not very high, and
other methods specially designed for roll estimation can be
used as a preprocessing method [45], [46].

7 CONCLUSIONS AND FUTURE WORK

In this paper we introduced a novel method to estimate the
number of correct matches and a method to estimate the
region of overlap between a pair of images. We also derived
a probability function for a match to be correct. This was
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Figure 11: Using our estimate for NG to discard pairs of images from a SfM pipeline in the “LunchRoom”, “Barcelona”
and “Person-Hall” datasets (left to right); The continuous and broken blue lines correspond to the KL

2 and KV
2 methods,

respectively. Similarly, the green lines correspond to KL
1 and KV

1 , respectively. The red and magenta curves correspond to
the BoW and HPM methods, respectively. Top row: the x-axis corresponds to the percentage of remaining image pairs
that have spatial overlap after thresholding. The y-axis corresponds to the percentage of runtime required to process the
images in comparison to the näive method. Bottom row: the x-axis is the same as in the top row. The y-axis corresponds
to the percentage of runtime spent on correctly identifying spatially overlapped image pairs in comparison to the total
runtime required to process the images.

Figure 12: Sampling methods for guided RANSAC using
the real datasets (Section 6.1.2). The x-axis corresponds to
the rank of the matches when sorted by the probability. The
y-axis corresponds to the precision of correct matches.

done using only the spatial order of a given set of matches
and some reasonable statistical assumptions. We considered
two alternative metrics between permutations, the Kendall
and the Spearman distance metrics.

We tested the effectiveness of these estimations on real
datasets. Our experiments show that the Kendall based
method is superior to the Spearman based method. Our
method successfully competes with methods that compute
the set of inliers explicitly by recovering the epipolar geome-
try. However, our method is much faster. Three applications
were presented to demonstrate the practicality of our re-
sults. This demonstrates the power of analyzing the spatial
order of matched features. A limitation of our method is
moving objects, which do not agree with assumptions 1-3.
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