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Abstract

We propose a method to precisely segment books on
bookshelves in images taken from general viewpoints. The
proposed segmentation algorithm overcomes difficulties due
to text and texture on book spines, various book orientations
under perspective projection, and book proximity. A shape
dependent active contour is used as a first step to establish
a set of book spine candidates. A subset of these candi-
dates are selected using spatial constraints on the assembly
of spine candidates by formulating the selection problem as
the maximal weighted independent set (MWIS) of a graph.
The segmented book spines may be used by recognition sys-
tems (e.g., library automation), or rendered in computer
graphics applications. We also propose a novel applica-
tion that uses the segmented book spines to assist users in
bookshelf reorganization or to modify the image to create a
bookshelf with a tidier look. Our method was successfully
tested on challenging sets of images.

1. Introduction
We propose a method to precisely segment books on

bookshelves. Books may have different orientations and the
image may have a perspective distortion. The visible part of
a book on a bookshelf is the book spine (or spines for short),
and other parts are typically occluded. Hence, we simplify
the task of book segmentation to the segmentation of their
spines (see example in Fig. 1).

Book spine segmentation, however, poses unique, non-
trivial challenges. Books are typically located very close
to each other and are highly textured. Most existing region
based segmentation methods assume that objects are sepa-
rated and surrounded by a smooth background; hence, they
are expected to fail on this task, as we demonstrate in Sec. 5.
Similarly, active contour methods that initialize a contour
considerably far from an object are expected to fail due to
convergence to a region that covers a set of spines. Object
segmentation methods that learn object instances of a given
class are also expected to fail due to the large variability of

Figure 1: Book spine segmentation results.

book spines and their density on the shelves.
We propose a method that overcomes these challenges,

where the multiplicity of books is used to obtain robustness.
Our method consists of two phases. The first allows us to
obtain a set of spine candidates with many false positives,
but relatively very few false negatives. In the second phase
we use spatial constraints to filter the set of spine candi-
dates.

The first phase is a modification of the active contours
paradigm with a predefined contour shape, a perspective
projection of a rectangle - PR (Sec. 3.1). We assume that
all book spines are coplanar or lie on parallel planes (identi-
cal 3D normals), but may have different orientations within
these planes. Thus, although the edges of each spine are
consistent with a pair of orthogonal vanishing points, differ-
ent spines may have a different pair of vanishing points (un-
like in Manhattan world). However, the vanishing points of
all spines are incident to the same vanishing line. These
observations are used to constrain the shape of a PR. The
PR “snake” expands from a seed point to obtain minimal
energy.

In the second phase the set of the detected spine candi-
dates is filtered according to the size statistics and relative
spatial location (Sec. 3.2). In particular, the selection prob-
lem is formulated as the maximal weighted independent set
(MWIS) of a graph that corresponds to the spatial relations
between the spine candidates.

Applications: Book recognition can be used to automate
libraries, e.g., managing an inventory of books. The seg-
mented book spines may be used in a preprocessing step for
book recognition systems that are based either on optical
character recognition (OCR, e.g., [6, 12, 18]), or on fea-
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ture recognition (e.g., [6]). Computer graphics and virtual
reality applications may use the precisely segmented book
spines to automatically populate virtual bookshelves with
real book spines.

We also propose a novel application that assists users in
reorganizing books on their bookshelves according to some
attribute (e.g., height). A related application reorganizes the
bookshelves directly in the image in order to obtain a tidy
looking shelf. In Sec. 4 we propose to use a reposition al-
gorithm that preserves the correct size of the spines in the
presence of perspective distortion.

2. Related Work
The objective of most book segmentation methods is to

automate library related tasks, for example, managing an in-
ventory of books. The majority of these studies [6, 12, 18]
segment book spines as a step towards book identification.
Book spines are segmented by grouping adjacent long line
segments. OCR methods [12, 18], or feature-based methods
[6], are then used for book identification. Taira et al. [14]
focused only on book spine segmentation and used a finite
state machine (FSM) in order to define rules for grouping
the extracted line segments. For example, a line created
by the text of the title often appears between long vertical
line segments, which are the boundaries of the book. None
of these studies aim to obtain a precise segmentation of the
spine, nor, in particular, to detect its upper part, although do-
ing so is essential for graphics and book reorganization ap-
plications and might also improve the performance of book
identification systems.

Moreover, most algorithms mentioned above [14, 6, 12]
assume orthographic projection, and most of these [6, 12,
18] also assume that all of the books have the same ori-
entation in the plane; [12] further assumes that they are
roughly aligned with the axis of the image. These assump-
tions are clearly too restrictive for the general bookshelf
images considered in this paper. Furthermore, the perfor-
mance of these algorithms is affected by book texture, since
they rely on long line primitives, coupled by their order. In
particular, long line extraction, using line-fitting [6, 12, 18]
or the Hough transform [14], often produces false negatives
in a cluttered texture-full environment such as a bookshelf.
These failures are demonstrated in Sec. 5. In our study we
consider perspective projections of book spines taken from
any viewpoint, at any orientation.

Perspective rectangle detection algorithms were used
for detecting windows and doors in offices and hallways
[11, 13], or to segment buildings or windows in urban envi-
ronments (e.g., [11, 13]). However, these algorithms are ex-
pected to provide poor results on spine segmentation since
they assume all rectangles are aligned in the scene (the Man-
hattan world assumption). In addition, these methods as-
sume that the perspective rectangles are surrounded by a

textureless background.
The segmentation of rectangles using active contours

was proposed by [1] for medical segmentation of inter-
vertebral disks in the human spine. A rectangle shaped con-
tour, that undergoes rotation and scaling in the image plane
is employed in their algorithm. Their contour energy score
is based on Chan et al. [5]. This energy score is not suit-
able for book spine segmentation since it is based on the
assumption that the object to segment is of (almost) con-
stant color. Furthermore, the rectangle they employ is a
semi-affine transformation applied to the unit square, which
represents only right-angle rectangles and not perspective
projections of rectangles.

3. Book Spine Segmentation
An image of books placed on bookshelves is the input

to our method. We assume that all book spines are parallel
to a plane π. The output is a set of spines, each having the
shape of a perspective projection of a rectangle (PR). Our
method consists of two phases. The first is the identification
of a set of PR candidates that are consistent with the image
gradients and the expected perspective. The second is the
filtering of this set according to the candidates’ location,
relative size and spatial relations. (See pseudocode in the
supplemental material.)

3.1. Identifying PR Candidates

We present a method to detect a set of PRs that are can-
didates to segment book spines. We formulate the PR de-
tection as a minimization problem over five parameters.

3.1.1 PR Parametrization

A straightforward parametrization of a general quadrilateral
is given by the location of its 4 vertices (8 parameters). Here
we assume that an internal point s of the PR is available, as
well as two vanishing points v and v⊥ that correspond to
orthogonal directions in the plane π (see Sec. 3.1.4). Using
these assumptions, we show that 5 parameters are sufficient
for the parametrization of a PR.

Let us first consider a rectangle (i.e., no distortion due to
perspective). In this case, a single orientation parameter, α,
can determine the orientation of the 4 edges. The size and
location of the edges can be determined by 4 values, the
distance from a given internal point s to each of the edges.

When PRs are considered, similar parametrization can
be used. In this case, the orientation of each edge depends
on the edge location and its corresponding vanishing point,
v or v⊥. A single point, qi, on an edge, ei, together with
its corresponding vanishing point, (say) v, defines the edge
orientation. To compute qi, we use the oriented distance di
from s, along a line in the direction of the orthogonal van-
ishing point v⊥ given by û(s, v⊥) (see Fig. 2). Formally, q1
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Figure 2: PR parametrization.

and q3 are given by:

q1 = s− d1û(s, v⊥) & q3 = s+ d3û(s, v⊥). (1)

In a similar manner we define q2 and q4. Let l1 be a line
in the image through q1 and v, and l2 be a line in the im-
age through q2 and v⊥. A vertex p12 is defined by the in-
tersection point between l1 and l2, in homogenous coordi-
nates:

p̃12(d1, d2) = l̃1 × l̃2. (2)
The other vertices, pij(di, dj), are defined in a similar man-
ner. Finally, a PR edge, ei, is the line segment between two
vertices, pji and pik, that is, ei = [pji, pik]. Note that pij
and ei are functions of the set D = {di}4i=1 and α; the pa-
rameter α defines the pair of orthogonal vanishing points, v
and v⊥, as shown in Sec. 3.1.3.

3.1.2 PR Expansion

Given a seed point s and an initial orientation α0, we search
for a PR, defined by D and α that best agree with the image
gradients. The search is performed in rounds. In each round
each di ∈ D is either incremented by one pixel, or remains
unchanged. In the first case we say that the parameter di is
in an active state, and in the second it is in an inactive state.
After each round, α is updated and each di may enter or
exit the active state according to the consistency of the PR
with the image gradients. When all di are inactive simul-
taneously, the process halts. Each di ∈D is initially in the
active state and di = 1.

Note that the value of di determines both the location of
the edge ei and the length of its adjacent edges. Hence, in-
crementing di affects the consistency of the image gradients
with the edge ei as well as with the extension segments of
the adjacent edges (see the yellow segments in Fig. 3). The
inactive state is determined by both consistencies, as next
defined.

An edge consistency (edge energy) with the image gra-
dient is defined to be the mean angle between the edge nor-
mal, n̂(e), and the image gradients along e. Formally,

E(e) =

∑
p∈e arccos(|∇̂I(p) · n̂(e)|)

|e|
, (3)

Figure 3: Edge extension segments are marked in yellow.

where p ∈ e is a pixel on the edge e, ∇̂I(p) is the gradient
at p, and |e| is the edge length measured in pixels.

For di to enter the inactive state, three conditions must
hold. (i) E(ei(D)) is a local minimum as a function of di.
(ii) E(ei(D)) < tG, where tG is a predefined threshold.
(iii) The adjacent edges do not support the incrementing of
di. This last condition is introduced in order to avoid halting
at a local minimum. To formulate this support, we consider
the edge extension segment of an adjacent edge where di is
incremented by δ (Fig. 3). Formally, let ej be an adjacent
edge of ei and define its edge extension segment by:

∆ej(di, δ) = [pij(di, dj), pij(di+δ, dj)].

If the edge energy of at least one of the edge extension
segments of ei, ∆ej and ∆ek, is higher than βtG, that is,
max (E(∆ej), E(∆ek)) > βtG, then di enters the inactive
state.

To avoid convergence to textures inside the spine, e.g.,
due to text, an inactive di may return to the active state, if
the consistency of ei with the image gradients changes. This
may occur when ei lengthens due to changes in the adjacent
edges, i.e., the increase of dj and dk. A di returns to the
active state when E(ei) < λtG, where λ > 1 is a constant
defined to prevent frequent state changes.

At the end of each round, the current orientation of the
PR, αc, is chosen by testing the consistency of the PR edges
with the image gradients for various orientations. In our
implementation we consider 10 values of α, equally dis-
tributed, in the range [αc − π

36 , αc + π
36 ] (all values are in

radians). That is,

αc=arg min
α′

(
4∑
i=1

E(ei(α
′))

)
.

3.1.3 Orthogonal Pairs of Vanishing Points

To preserve a PR shape, a pair of orthogonal vanishing
points, (v(α), v⊥(α)), is required for each orientation α.
We assume that all spines are on planes parallel to π; hence,
all vanishing points are located on a vanishing line, `. As a
preprocessing step, we compute ` by detecting the two van-
ishing points that correspond to the dominant orthogonal
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Figure 4: Orthogonal pairs of vanishing points. The gray
triangle indicates the plane of book spines π.

directions in the image, v0 and v0⊥, using [17]. The dom-
inant orthogonal directions are assumed to be on π, since
we assume that the image contains a sufficient number of
books. An additional preprocessing step is computing the
internal calibration matrix, K. To do so, we assume the
camera has square pixels, no skew, and the principle point
is in the middle of the image. These assumptions provide
sufficient constraints on K for a linear solution, using the
additional constraints of the orthogonality of the vanishing
points v and v⊥ [8].

Given the internal calibration matrix, K, and the two or-
thogonal vanishing points, the normal n̂ to the plane π in
the camera coordinate system can be computed as follows.
The vanishing point v that corresponds to a 3D direction û
is given by ṽ = M(û 0)T . We choose the world coordinate
axes and the camera coordinate axes to be identical; hence,
ṽ=Kû. In particular, the direction û0 that corresponds to
the vanishing point v0 is given by v0 =Kû0.

Since û and û0 are both parallel to the plane π, they
are related by û = R(n̂, α)û0, where R is a rotation ma-
trix about axis n̂= û0×û0⊥ and angle α. In a similar manner
it can be shown that any pair of orthogonal vanishing points,
as a function of α, is given by (Fig. 4):

v(α) = Kû = KR(n̂, α)û0 = KR(n̂, α)K−1v0.
v⊥(α) = KR(n̂, α)K−1v0⊥.

3.1.4 Initialization

To initialize the set of seed points, we extract line segments
using [10], and filter segments shorter than a predefined
threshold (we use 10% of the image height). Seed points are
placed at equal distances along each side of each segment at
a small perpendicular offset (Fig 6(b)). In our implementa-
tion we set 10 seed points along each line, and an offset of
5 pixels.

To obtain an initial estimation of α for a given seed point,
the dominant gradient direction in a h × w of its neighbor-
hood (we use 50 × 50 pixels) is computed. To obtain very

accurate gradient directions, we use the third-order edge
operator [15]. The intersection of this direction with the
vanishing line determines its corresponding vanishing point
v. The initial estimation of α0 is taken as the angle be-
tween the directions that correspond to v and v0. That is,
α0 = arccos(ûT ·û0), where û = K−1v and û0 = K−1v0

are the directions that correspond to v and v0 respectively.

3.2. PR Selection

The computed set of PRs consists of the desired book
spines as well as many other PRs that should be discarded.
These include PRs that segment several books together
(e.g., Fig. 5b), sub-regions of a spine (e.g., Fig. 5a), other
objects in the scene, or simple noise. In addition, several
PRs may segment almost the same region in the image. We
present an algorithm to select the set of PRs that most prob-
ably represent book spines, using the assembly of books.

3.2.1 Location and Size

We assume that the detected books are either positioned on
a set of parallel bookshelves or supported by other books
that are positioned on a bookshelf (e.g., a pile of books).
The random sample consensus algorithm (RANSAC) [7] is
used for estimating a bookshelf line with the set of lower
vertices of the PRs as input. This avoids direct detection of
the bookshelf edge. To detect n shelves, RANSAC is exe-
cuted n times where in each run the inliers from previous
runs are excluded (in our implementation we assume that
n ≤ 10). The detected bookshelf lines that do not agree
with a single vanishing point are removed using RANSAC.
Finally, the set of detected bookshelves is used to recur-
sively select the set of PRs supported by either a bookshelf
or by another book. All other PRs can be discarded.

We wish to filter PRs according to their size; however,
their size depends on their 3D location due to perspective.
To avoid a direct 3D reconstruction, we perform a normal-
ization based on the perspective aware repositioning of pla-
nar objects algorithm by Tolba et al. [16] (see Sec. 4). The
result is the set of PRs as if they were all projections of
spines incident to the same scene location. In particular,
p41, e1 and e4 of all PRs are aligned. The statistics of the
length of the repositioned e1 and e4 are used to discard PRs.
(We discard σ below or 2σ above the mean for both e1, e4.)

3.2.2 Spatial Relations

The set of remaining PRs contains large overlap between
PRs. To obtain a subset of disjoint PRs that best represent
the book spines, we model the PRs and the spatial rela-
tions between them as an undirected graph G = (V,E).
A node v ∈ V represents a PR and an undirected edge
(vi, vj) ∈ E represents a normalized rate of overlapping of
at least γ between vi and vj (in our implementation γ=0.1).
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(a) (b)

Figure 5: MWIS examples. a) Horizontal overlap; b) hori-
zontal span.

That is,
|R(vj) ∩ R(vi)|

min(|R(vi)|, |R(vj)|)
≥ γ,

where |R(v)| is the area of the PR region, R(v), that cor-
respond to v. By definition, every independent set defined
over this graph, i.e., a subset of non-adjacent nodes, corre-
sponds to a subset of disjoint PRs.

To obtain an independent set which also corresponds to
the most probable PRs to represent the book spines, we as-
sign weights, w : V → R+, to the nodes v ∈ V . The
weight w(v) captures the preference of choosing v over a
subset of its neighbors. The maximal weighted indepen-
dent set (MWIS) of the weighted graph, G(V,E,w), corre-
sponds to the subset of disjoint PRs that are preferred over
their neighbors.

The most common spatial relation between PRs is due to
multiple detections of the same spine but truncated at differ-
ent heights (see Fig. 5a); hence, we set w′(v) to be inverse
proportional to the gradient support of the vertical edges,
E(e1), E(e3), and the height, h(v) (approximated by |e1|).
That is,

w′(v) = h(v)

(
1− E(e1) + E(e3)

2tG

)
,

where tG is the energy threshold introduced in Sec. 3.1.2.
Another common spatial relation between PRs is a sin-

gle PR that covers a set of PRs that corresponds to adjacent
book spines. In this case the set is preferred over the large
PR; thus, we set w(v) = 0. Formally, HS(v) ⊆ N(v)
is a horizontal span of v ∈ V iff three conditions hold.
(i) |HS(v)| ≥ 2. (ii) There is no overlap between any
u1, u2 ∈ HS(v), i.e., (u1, u2) /∈ E. (iii) HS(v) covers the
horizontal dimension of v. See Fig. 5b. Formally, let xl(u),
xr(u) be the x coordinates of the bottom left and bottom
right corners of u ∈ HS(v). There exists u, u′ ∈ HS(v)
such that xl(u) ≈ xl(v) and xr(u′) ≈ xr(v). Furthermore,
for each ui ∈ HS(v), ui 6= u′, there exists uj ∈ HS(v)
such that xr(ui) ≈ xl(uj).

To determine whether v does in fact have a horizon-
tal span, we sort u ∈ N(v) by xl(u). Then, for each

u1 ∈ N(v), we add it to HS(v) if there exists u2 ∈ HS(v)
for which the last two conditions in the horizontal span def-
inition hold.

To summarize, the weight of a node v is given by:

w(v) =

{
0 ∃HS(v) ⊆ N(v),

w′(v) otherwise.
(4)

Note that w(v) is non-negative for all v ∈ V .
The MWIS problem is NP-hard for a general input. In

our method, the input (the PRs) is not bounded in a way that
allows the optimal solution to be obtained in polynomial
time; therefore, the approximation from [4] is used.

The MWIS was used previously for segmentation by the
authors of [4], to select “meaningful” segments from a hier-
archy of segmentation maps. In their method, however, the
segment weight corresponds to the prediction of the seg-
ment appearance using other parts of the image. The (hid-
den and) underlying assumption is that different segments
are fundamentally different in appearance and act as back-
ground for each other, which is not true in our case, where,
for example, two segments of two different book spines are
similar in appearance.

4. The Bookshelf Reorganizer Application
The precise spine segmentation computed by our method

may be used as an input for graphic applications or as a pre-
processing step for book recognition methods. We propose
a novel application in which the spines may be used to gen-
erate an image in which the books on the bookshelves are
reorganized. The new book order is automatically set ac-
cording to a user-chosen criterion, e.g., height, width, and
color, which as we next show can be directly computed from
the spines. If OCR is available, title or author name may
be used to set the order as well. This application allows a
user to consider several alternatives for the bookshelf look,
before actually moving books around. In addition, it al-
lows books to be reorganized directly in the image to ob-
tain a nicer looking and tidier bookshelf (e.g., all books are
aligned).

Given the segmented spines, the main challenge is to
change the book locations while preserving their size and
shape with respect to the perspective view of the scene.
To this end, we apply Tolba et al.’s [16] method for
perspective-aware repositioning of planar objects. Transla-
tions and rotation are modeled as families of homographies
that depend on the normal to the planar object, the transla-
tion distance in the image plane, and the rotation axis and
angle. We use this method with the input of the normal n̂
to the plane π (computed in Sec. 3.1.3), as both the normal
to the planar object and the axis of rotation. The translation
distance and rotation angle are derived from the user-chosen
reorganization criterion. Sorting the book spines’ height
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(a) (b) (c) (d) (e)

Figure 6: Book spine segmentation steps. From left to right: a) original image, b) seed point and line segments, c) PR
candidates, d) PR candidate after location and size filtering, e) final segmentation results (after MWIS).

Figure 8: The bookshelf reorganizer examples.

or width is necessary when the user chooses to reorder the
books by these criteria. To sort the height or width despite
the perspective distortions, the book spines are aligned to
the same image location, as described in Sec. 3.2.1.

To obtain a pleasing image, the remaining challenge is to
fill the uncovered parts of the books, e.g., the upper parts,
and the gaps that remain after the books are reorganized.
We have experimented with two approaches to rectify these
gaps. The first is to render the reorganized book spines on a
clean bookshelf, i.e., a user-chosen background image. For
a realistic look, we arbitrarily chose depth for the books in
order to reconstruct their missing parts, e.g., the upper part
of the books. The images were rendered in OpenGL, and
the results are presented in Fig. 8. The second approach is
to inpaint the gaps, which was proven to be difficult and is
left for future work.

To overcome segmentation errors, the application may
also be in interactive mode and display the segmentation
results to the user. The user can delete and add PRs. The
latter can be done manually or by choosing PRs from the
initial set of book spine candidates (before the PR selection
phase). Note that all the results presented in the paper were
generated completely automatically.

(a) (b)

Figure 9: a) Segmentation results of the OWT-UCM method
by Arbelaez et al. [2]; b) An example of segmentation fail-
ure of [6], due to the violation of the uniform orientation
assumption, on image Fig. 1. Notice that the grouping of
adjacent long line segments suggested in [6] is not applica-
ble in this example.

5. Experimental Results
We implemented our algorithm in Matlab and tested it

on a representative set of images, some collected from the
Internet and some taken by us (the code and the images will
be available). We considered 2 datasets. The first contained
45 images (1163 book spines), mostly with uniformly ori-
entated book spines on a single shelf, with only negligible
perspective distortion (left in Fig. 7). The second contained
27 images (1235 book spines), of arbitrarily oriented book
spines and multiple shelves, mostly under perspective pro-
jection view (center and right in Fig. 7).

Segmentation Examples: A few segmentation results are
presented in Fig. 7. It can be seen that the majority of book
spines are correctly and precisely segmented, and there are
relatively few false positive detections. Example of errors
e.g., an overly extended spine, a partially segmented book
spine, unsegmented spine, and noise, are marked in Fig. 7.
Some of these failures are due to the choice of parameters,
as we next discuss.

Parameters: For quantitative evaluation, described be-
low, the same set of parameters is used in all experiments,
despite the large variability in image resolution, number of
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Figure 7: Book spine segmentation results and typical segmentation errors. Left, dataset 1; middle and right, dataset 2.
Arrows mark segmentation errors: overextension (yellow); partial segmentation (red); false negative (white); false positive
(green).

tG = 0.3 tG = 0.35

Figure 10: Different segmentation results with different pa-
rameters. The red arrows indicate segmentation errors.

books, etc. The general performance is not sensitive to pa-
rameter changes in the following ranges: (i) tG ∈ [0.25, 0.4]
(Sec. 3.1.2) in radians. (ii) The parameters for filtering by
size ∈ [σ, 3σ] and [0.5σ, 1.5σ] (Sec. 3.2.1) for filtering
above and below the mean, respectively. Better results can
be obtained if the parameters are tuned for a specific set of
images. An example of the effect of different parameters on
the segmentation results is presented in figure 10.

Quantitative Evaluation: For quantitative evaluation,
the ground truth segmentation was manually generated. We
considered only fully visible book spines and discarded
those that intersect with image boundaries. We used the
Hoover Index (HI) [9], in which the computed segments
are labeled as correct detection, oversegmentation, under-
segmentation, missed or noise. The normalized overlap
between a computed segment, R(c), and a ground truth
segment, R(g), is used to determined a correct detection.
That is, |R(c) ∩ R(g)|/max(|R(c)|, |R(g)|) ≥ γ where
γ is a predefined threshold (we use γ = 0.8). The pre-
cision and recall were calculated using only the correct
detections and combined to a total score as a harmonic
mean of precision-recall. Since we use a randomized ap-
proximation to the MWIS, we present the mean and stan-
dard deviation of 10 runs. Dataset 1 reached a mean/std
precision-recall of 90.44%/0.3% (precision 92.61%/0.28%,
recall 88.38%/0.32%) and dataset 2 reached a precision-
recall of 70.78%/0.58% (precision 73.95%/0.35%, recall
67.87%/0.81%).

We next analyze the effectiveness of the first and second

phases in terms of their contribution to the final segmen-
tation results. The first phase produces a high recall rate
(∼95% for dataset 1 and ∼82% for dataset 2) and, as ex-
pected, a low precision rate (∼38% for both). The goal of
the second phase is to increase the precision rate while pre-
serving most of the recall rate. Table 2 shows the contribu-
tion of location and size (Section 3.2.1), as well as that of
the MWIS (Section 3.2.2), in the second phase. According
to our analysis, the contribution to the increase in precision
is mostly due to the size and the MWIS. As a result of the
increase in precision, the recall was affected mostly by the
MWIS (∼ 6%,13% decrease of recall for datasets 1 and 2,
respectively).

Comparison: We did not compare our segmentation
method to previous book spine recognition methods ([6,
12, 18, 14]) because the restrictive assumptions they used
are not applicable to our data (as demonstrated in Fig. 9).
Therefore, we chose instead to compare our results to a
state-of-the-art general segmentation algorithm. We use
the top-performing segmentation algorithm in the Berkeley
Segmentation Data Set 500 (BSDS500) [3]: the OWT-UCM
segmentation algorithm suggested by Arbelaez et al. [2].
We used the available code from the Web.

An example of a typical result (Fig. 9) demonstrates the
expected failure of a general segmentation method that does
not use the available domain specific constraints. A quan-
titative comparison of our and the OWT-UCM methods is
presented in Table 1. In addition to the Hoover Index, we
also use the evaluation schemes used in the BSDS500: seg-
mentation covering (SC), variation of information (VI), and
probabilistic rand index (PRI) [2]. Segmentation covering
measures the maximum area covered by the computed seg-
mentation for each segment in the ground truth. Variation
of information corresponds to the entropy of the disjoint
pixels between the segmentation and the ground truth, and
the probabilistic rand index measures the probability that
a given pair of pixels belongs to the same label in the seg-
mentation and in the ground truth. Arbelaez et al. evaluated
their algorithm in terms of its optimal dataset scale (ODS),
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HI SC PRI VI
Ours Arbelaez [2]

(ODS/OIS)
Ours Arbelaez [2]

(ODS/OIS)
Ours Arbelaez

[2]
Ours Arbelaez

[2]
Dataset 1 0.9044 0.3268 (Th:0.3) / 0.3472 0.7849 0.4781 (Th:0.15) / 0.5154 0.9174 0.8691 1.3782 2.1523
Dataset 2 0.7078 0.1759 (Th:0.2) / 0.1932 0.7952 0.4911 (Th:0.05) / 0.5668 0.8397 0.7203 1.3097 2.4090

Table 1: Segmentation results of our method and the OWT-UCM (Arbelaez et al.) method.

Precision / Recall (∼%)
Initial Location Size MWIS

Set1 38 / 95 42 / 95 65 / 94 93 / 88
Set2 38 / 82 44 / 82 67 / 81 74 / 68

Table 2: Effectiveness analysis of the second phase. The
parameters used for this analysis (as well as the results and
generated images in this paper) : tG = 0.3, size filtering
above the mean = 2.5σ, and below = σ.

which sets a uniform scale for all images, and its optimal
image scale (OIS), which sets different and optimal scales
for each image. Our method significantly outperforms the
OWT-UCM algorithm in every evaluation criterion, e.g., we
reach 87.49% and Arbelaez et al. reach 32.68% (ODS) and
34.72% (OIS) on dataset 1, with the HI criterion. Note that
the VI criterion is higher as the segmentation deteriorates.

Bookshelf Line Detection: The results were evaluated
manually. Here, the recall is more important than the preci-
sion, because of its influence on the end results of the book
spine segmentation, i.e., an undetected shelf line results in
multiple unsegmented book spines. The bookshelf line de-
tection reached a recall of 88.14% over the 2 datasets to-
gether, and a lower precision of 58.43%. Most of the un-
detected bookshelf lines consist of a small number of book
spines, or book spines that do not form a straight line.

6. Conclusion and Future Work
We proposed a solution to the challenging problem of

book spine segmentation in images under perspective pro-
jection, where the books are not aligned. Our two phase
solution allows us to obtain a large set of spine candidates
using a bottom-up computation, and a top-down computa-
tion to filter the results. The high recall of the first phase is
due to the use of the PR, rather than line segments as a ba-
sic primitive. The success of the second phase comes from
analyzing the assembly of book spine candidates.

We also proposed methods for dealing with untidy book-
shelves. Although book segmentation is non-trivial, the de-
sired reorganization of a bookshelf is relatively easy to de-
fine. For short-term future work, the gap inpainting should
be resolved. For the long term, object segmentation may be
used to reorganize other untidy parts of a room.
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